
XML Overview, part 1
Norman Gray

Revision 1.4, 2002/10/30

XML Overview, part 1 – p.1/28

Contents

The who, what and why

XML Syntax

Programming with XML

Other topics

The future

http://www.astro.gla.ac.uk/users/norman/docs/

XML Overview, part 1 – p.2/28

http://www.astro.gla.ac.uk/users/norman/docs/

The who, what and why

Contents

The who, what and why
What is XML?
(but what about HTML?)
Why is XML?
Who is XML?

XML Syntax

Programming with XML

Other topics

The future

XML Overview, part 1 – p.3/28

What is XML?

XML is ‘eXtensible Markup Language’

XML is SGML--: SGML is ‘Standard Generalised
Markup Language’, very robust, very large-scale

http://www.w3.org/TR/1998/REC-xml-19980210, and
http://xml.coverpages.org

Standardized markup, intended to be easy to parse,
and easy to navigate around

Strongly hierarchical, but only sort-of object-orientated

Supports two paradigms: XML as documents, and
XML as database

With the syntactic foundations sorted out, it’s easy
(-ish) to add further standards which add semantics

But XML is now turning into ++(--SGML)
XML Overview, part 1 – p.4/28

http://www.w3.org/TR/1998/REC-xml-19980210
http://xml.coverpages.org

(but what about HTML?)

HTML is an SGML application

. . . in the sense that HTML 2–4 were defined as SGML
DTDs

. . . and even though most browsers let you break most
of the rules

Set of elements (‘p’, ‘table’, ‘h1’, . . .) is useful but fixed

‘Extensible’ means XML allows you to define your own
vocabulary of elements – defining a new syntax

Semantics – the meaning – is separate, and that’s
what applications add, using DOM, XSLT, or whatever

XML Overview, part 1 – p.5/28

Why is XML?

. . . because SGML is too hard, or too big, or too
eighties

. . . because writing robust parsers is boring

. . . because validation makes life easier for processors
(and their authors)

. . . because a strongly hierarchical way of representing
information is generally natural and useful, and
particularly useful to us, used to using NDF, HDS, FITS

XML Overview, part 1 – p.6/28

Who is XML?

W3C, www.w3.org: the World Wide Web Consortium,
which issues Drafts and Recommendations

W3C is pay-to-play, and most of the big corporations
are playing (not too many fouls); but so are other
organisations, including RAL

Plus RFCs for things like HTTP, URIs

Plus community standards, like SAX

xml-dev, XMLDeviant

XML Overview, part 1 – p.7/28

www.w3.org

XML Syntax

Contents

The who, what and why

XML Syntax
Tags and elements
Well-formed XML
DTD syntax
XML Schema syntax [. . .]

Programming with XML

Other topics

The future

XML Overview, part 1 – p.8/28

Tags and elements

<memo>
<from email="norman@astro.gla.ac.uk"/>
<p>Hello, there</p>

</memo>

Tags versus elements, and empty elements

Attributes versus element content

Comments: <!-- stuff without
double-hyphens-->

Escaping: &, <, >, or the blunt instrument
of <!CDATA[anything]]>

All Unicode, including element names

Whitespace rules are complicated but unsurprising; if
you care, read the XML 1.0 rec.

XML Overview, part 1 – p.9/28

Well-formed XML

All elements closed

No overlapping elements: <i>forbidden</i>

Attribute names are unique within a tag, and their
values have quotes: <el att="value">

Only one top-level element

Addresses much of the problem, and DTDs solve
much of the rest

XML Overview, part 1 – p.10/28

DTD syntax

<!ELEMENT memo (from?, p+)>

<!ELEMENT from EMPTY>

<!ELEMENT p (#PCDATA)>

<!ATTLIST from

email CDATA #IMPLIED>

. . . doesn’t look too pretty, but it does the job

Still heavily used

Will probably last a long time

XML Overview, part 1 – p.11/28

XML Schema syntax

The current W3C-blessed syntax

Written in XML instance syntax; rather verbose

Has a more elaborate set of types, and can specify
more elaborate constraints than DTD syntax is capable
of

. . . but not everything

Popular with database folk

Less ubiquitous application support, but politically
important that it succeeds

XML Overview, part 1 – p.12/28

Relax NG

Community standard (from James Clark)

Non-XML syntax, but readable

Extensible

Might well take off

XML Overview, part 1 – p.13/28

Programming with XML

Contents

The who, what and why

XML Syntax

Programming with XML
Parsers, languages and APIs
DOM
Programming with DOM
SAX [. . .]

Other topics

The future

XML Overview, part 1 – p.14/28

Parsers, languages and APIs

There are numerous parsers, in Java, C, C++, Python,
Perl, . . .

Numerous editors

See the Cover pages, xml.coverpages.org

DOM and SAX are the main interfaces to XML parsers

. . . but there are also other minimal ones

XSLT and XSL-FO are languages to transform and
format documents

XML Overview, part 1 – p.15/28

xml.coverpages.org

DOM

‘Document Object Model’ allows you to wander round
the tree

All in memory (in principle)

Allows arbitrarily complicated programmatic control
over the DOM

Doesn’t have to originate from an XML file! XML is not
about angle-brackets!

Java API: org.w3c.dom.*, supported in
javax.xml.*

Also dom4j from IBM, Xalan, . . .

XML Overview, part 1 – p.16/28

Programming with DOM

import org.w3c.dom.*;

import javax.xml.transform.*;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;

public class SimpleDom {

public static void main (String[] argv) throws Exception {

Document doc =

javax.xml.parsers.DocumentBuilderFactory.newInstance()

.newDocumentBuilder().newDocument();

Element el = doc.createElement("memo");

doc.appendChild(el);

Element kid = doc.createElement("from");

kid.setAttribute("email", "norman");

el.appendChild(kid);

Transformer trans = TransformerFactory.newInstance().newTransformer();

trans.transform(new DOMSource(doc),

new StreamResult(System.out));

}

}

XML Overview, part 1 – p.17/28

SAX

Event model

. . . so suitable for very large files

Most suitable, in general, for formatting/searching

. . . but not limited to that

www.saxproject.org

XML Overview, part 1 – p.18/28

www.saxproject.org

Programming with SAX

import org.xml.sax.XMLReader;

import org.xml.sax.helpers.DefaultHandler;

import org.xml.sax.helpers.XMLReaderFactory;

public class Poco extends DefaultHandler {

public static void main (String[] args) throws Exception {

XMLReader reader = XMLReaderFactory

.createXMLReader("org.apache.xerces.parsers.SAXParser");

Poco handler = new Poco();

reader.setContentHandler(handler);

reader.parse(args[0]);

}

public void startDocument() {

System.out.print("Arf!");

}

}

XML Overview, part 1 – p.19/28

XSLT

XSLT is the (main/standard) transformation language

Powerful, and usable, though it looks a bit wierd to
begin with

XSL-FO (‘XSL Formatting Objects’) is a styling
language; mostly for print

CSS isn’t dead yet

XML Overview, part 1 – p.20/28

Programming with XSLT, I

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:template match="/">

<html>

<head>

<title>Memo from

<xsl:apply-templates select="memo/from"/>

</title>

</head>

<body>

<xsl:apply-templates/>

</body>

</html>

</xsl:template>

XML Overview, part 1 – p.21/28

Programming with XSLT, II

<xsl:template match="memo">

<p>From <xsl:apply-templates select="from"/></p>

<xsl:apply-templates select="p"/>

</xsl:template>

<xsl:template match="from">

<xsl:value-of select="@email"/>

</xsl:template>

<xsl:template match="p">

<p><xsl:apply-templates/></p>

</xsl:template>

</xsl:stylesheet>

XML Overview, part 1 – p.22/28

Programming with XSLT, III

Turns
<?xml version="1.0"?>

<memo>

<from email="norman@astro.gla.ac.uk"/>

<p>Hello, there</p>

<p>How are you?</p>

</memo>

into
<html>

<head>

<title>Memo from

norman@astro.gla.ac.uk</title>

</head>

<body>

<p>

From norman@astro.gla.ac.uk

</p>

<p>Hello, there</p>

<p>How are you?</p>

</body>

</html>

XML Overview, part 1 – p.23/28

Other topics

Contents

The who, what and why

XML Syntax

Programming with XML

Other topics
Namespaces
URIs, URNs and URLs
URI vs. URL vs. URN

The future

XML Overview, part 1 – p.24/28

Namespaces

A way of keeping vocabularies apart from each other

<html><title>Example</title>

<p>Here is a FITS file</p>

<hdx:hdx xmlns:hdx="http://www.starlink.ac.uk/HDX">

<hdx:ndx hdx:uri="file:myfile.fits" title="My title"/>

</hdx:hdx>

<p>Wasn’t that exciting</p>

</html>

It’s basically that simple, but there are gotchas to do
with default namespaces

XML Overview, part 1 – p.25/28

URIs, URNs and URLs

URL

http:...
ftp:... (purl)

URN

URI

fits:...

urn:...

XML Overview, part 1 – p.26/28

URI vs. URL vs. URN

URIs are general names for resources (RFC 2396)

URLs are URIs with location info

URNs are URIs with “an institutional commitment to
persistence”

XML Overview, part 1 – p.27/28

The future

Many more questions than answers

XML 1.1 has only minor changes – the fight about XML
2.0 hasn’t even started yet

Will XML Schemas take over the world?

DOM is a bit clunky: will it survive?

But there are emerging principles which should keep every-

one in step.

XML Overview, part 1 – p.28/28

	Contents
	The who, what and why
	What is XML?
	(but what about HTML?)
	Why is XML?
	Who is XML?
	XML Syntax
	Tags and elements
	Well-formed XML
	DTD syntax
	XML Schema syntax
	Relax NG
	Programming with XML
	Parsers, languages and APIs
	DOM
	Programming with DOM
	SAX
	Programming with SAX
	XSLT
	Programming with XSLT, I
	Programming with XSLT, II
	Programming with XSLT, III
	Other topics
	Namespaces
	URIs, URNs and URLs
	URI vs. URL vs. URN
	The future

